Dependency of Parameter Values in Reinforcement Learning for Navigation of a Mobile Robot on the Environment
نویسندگان
چکیده
Reinforcement learning is suitable for navigation of a mobile robot due to its learning ability without supervised information. Reinforcement learning, however, has difficulties. One is its slow learning, and the other is the necessity of specifying its parameter values without prior information. We proposed to introduce sensory signals into reinforcement learning to improve its learning performance, and to optimize its parameter values in reinforcement learning by a genetic algorithm with inheritance. The latter has to specify the parameter values for every new environment, which is impractical due to huge computational time. In this paper, we propose to analyze the dependency and sensitivity of the values of parameters on the environment for predicting the values of parameters for a novel environment without optimization. Computer experiments clarify the dependency of the values of parameters on the environment and their sensitivities. Keywords—reinforcement learning, genetic algorithm, navigation of a mobile robot, parameter dependency
منابع مشابه
Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملA New Method of Mobile Robot Navigation: Shortest Null Space
In this paper, a new method was proposed for the navigation of a mobile robot in an unknown dynamic environment. The robot could detect only a limited radius of its surrounding with its sensors and it went on the shortest null space (SNS) toward the goal. In the case of no obstacle, SNS was a direct path from the robot to goal; however, in the presence of obstacles, SNS was a space around the r...
متن کاملA New Method of Mobile Robot Navigation: Shortest Null Space
In this paper, a new method was proposed for the navigation of a mobile robot in an unknown dynamic environment. The robot could detect only a limited radius of its surrounding with its sensors and it went on the shortest null space (SNS) toward the goal. In the case of no obstacle, SNS was a direct path from the robot to goal; however, in the presence of obstacles, SNS was a space around the r...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کامل